MSE316H1: Mechanical Behaviour of Materials (Fall Course)

2. cadmium slip.jpg

Course Description: In this course, students will learn  mechanical behaviour of engineering materials including metals, alloys, ceramics, and polymeric materials, from the continuum description of properties to the atomistic and molecular mechanisms. The course will cover the following topics: mechanical testing methods, load-displacement and stress-strain relationships, elastic and plastic deformation, crystallographic aspects of plastic flow, dislocations, effect of defects on mechanical behaviour, strengthening mechanisms, creep deformation, and fracture of materials. In each topic, we will emphasize on microstructure-property relationships. We will focus more on metals and alloys

– the most widely used engineering materials. In addition, a few emerging topics will be introduced, such as nanoindentation, size effects, and biomechanics.

MSE419H1: Fracture and Failure Analysis (Fall Course)

 

Schenectady1941a.jpg

Course Description: In this course, we will learn about linear elastic and elastic-plastic fracture mechanics. The main topics include microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites, toughening mechanisms, crack growth resistance and creep fracture. Here, we will focus more on metals and alloys – the most widely used engineering materials. The following topics will also be covered: interface fracture mechanics, fatigue damage and dislocation substructures in single crystals, stress- and strain-life approach to fatigue, fatigue crack growth models and mechanisms, variable amplitude fatigue, corrosion fatigue and case studies of fracture and fatigue in structural, bioimplant, and microelectronic components.

MSE1068H: Additive Manufacturing of Advanced Engineering Materials (Summer Course)

Course Description: This one-week intensive course provides students with a comprehensive understanding of AM technology, its applications, and its implications both now and in the future.

The course introduces additive manufacturing (AM) process fundamentals, material properties, design rules, qualification methods, cost and value analysis, and industrial and consumer applications of AM. Particular emphasis will be placed on AM technologies for metals and other advanced materials (ceramics and composites), and related design principles and part performance. The AM techniques introduced in this course include, but are not limited, to selective laser melting, direct metal deposition, wire arc deposition, cold spray, powder binder jetting, electroplating, fused deposition modeling (FDM) and stereolithography (SLA).

The course will also include:​

- Lab activities which involve both desktop and industrial-grade 3D printers for metals, ceramics and composites, addressing the full workflow from design to characterization.

- Several interactive case studies which deploy quantitative analysis tools to solve a real or imagined market or business needs will be discussed.

- Virtual or in-person visits to local AM startups and an AM equipment provider/integrator.

- A multidisciplinary team of speakers including industry experts, and special guest speakers.

trumpf-laser-welding-640x353.jpg